LECTURE: 2-7 DERIVATIVES AND RATES OF CHANGE

Tangents

The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope
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Example 1: Find an equation of the tangent line to y = z? at the point (2, 4).
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An Alternative Expression for the Slope of the Tangent Line:
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Example 2: Find an equation of the tangent line to y = 2/z at the point (1,2).
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Velocities

Suppose an object moves along a straight line according to an equation of motion s = f(t), where s is the displace-
ment (directed distance) of the object from the origin at time t. How would you find the instantaneous velocity
v(a) at time ¢t = a?

_ . HO- fw) i Flath) ~fm)
Via) _Jg\a Ta or h;; N

Example 3: If a ball is thrown into the air with a velocity if 40 ft/sec, its height (in feet) after ¢ seconds is given by
y = 40t — 16t. Find the velocity when ¢ = a and use this to find the velcoity att = 1 and ¢t = 2.
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Derivatives

The derivative of a function f at a number q, denoted by f(a) i

Fa) = i L0 =@

if this limit exists.

Example 4: Find the derivative of f(z) = 5 — 2z — 2°. Then, find an equation of the tangent line to f(z) at the

point (1,2).

,C(a) = |iim f/ﬂ‘fh) —Ff()
A0
= 5-z(a+h)—la+ml~(6-20\-6\")
hd¢ h
= 4, 5= 28-2h = (rzanti) —9FA 74T
h9p |
= linm “2Zh —2an —h*

h-0 h
P,\"% (-2 26 —k)

l’l —2a l

Example 5: Given f(z) = 2% + = fmd f'(a).
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Example 6: The displacement (in feet) of a particle moving in a straight line is given by s(t) = 1¢* — 6t 4 23, where
t is measured in seconds.

(a) Find the average velocity over each time interval.
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Example 7: The cost of producing « ounces of gold from a new gold mine is C' = f(x) dollars.
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(a) What is the meaning of the derivative f’(z)? What are its units?
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(c) Do you think that the values of f’(z) will increase or decrease in the short term? What about the long term?
Explain.
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Example 8: The table below shows world average daily oil consumption from 1985 to 2010 measured in thousands
of barrels per day.

(a) Compute and interpret the average rate of change from 1990 to 2005. What are the units?

Years Thousands of barrels
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% 87,302 \V\LVQO«S\NX o 069.5 Movsindg of Yoty pev dﬁx&\
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(b) Estimate the instantaneous rate of change in 2000 by taking the average of two average rates of change. What Wr'

are its units?

vie M5HL00 — 76184 —100994 _ \223
15— (0
usL 2000 ¥2005 - 407716184 _ ‘4‘58 .
Zo—I15 )

G oy \'a"f)rz\%%fc = t%ﬂ 18 Arousands, of \oqm\&j

per doay per veor

Example 9: If an equation of the tangent line to the curve y = f(z) at the point where a = 1is y = —7z + 2, find
f(1)and f'(1).
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Example 10: Sketch the graph of a function f which is contindious ol the domain (-5, 5) and where f(0) = 1,

f1(0)=1, f'(-2)=0, HI_I15+ f(z) = —o0, and hl})l_ flx)y=4

c fO) =) 2 £ passe

l AN \ ‘\'\/\VDOQB\,\ (,D\‘\
| CWW=l D £ nasSlope
| i1e x=0
(
L. « -o-c‘\ (—L):O S5 £ s
T 7 cogEo @ X=2
\ _
| \ o v fipn= —m

A gt
( means o) D-m as
( X 3-gF

UAF Calculus 1 5 2-7 Derivatives and Rates of Change



